Tag Archives: nanotechnology

Texting, Sharing Feelings, And How Neuralink Could Revolutionize Both

mind-melds-e1509130881625

A while back, I speculated that memory enhancement might be the first “killer app” for brain implants. At the time, I thought my logic was solid. Every emerging technology needs that one lucrative use that makes it more than just a gimmick. Killer apps are what helped make smartphones more prevalent than toilets in some parts of the world. I believe brain implants will follow a similar path through companies like Neuralink.

I still believe that memory enhancement will be one of those functions that helps turn brain implants into a multi-billion-dollar industry and Elon Musk is likely to secure a share of those billions. However, after listening to the announcement that Musk gave earlier this year about the future of Neuralink, I’d like to revise my speculation a bit.

What Musk presented was plenty intriguing. Neuralink isn’t some wide-eyed fantasy endeavor conjured by an eccentric billionaire. It’s a real company seeking to develop real products that’ll create a whole new market. Some of those early products are already taking shape.

Right now, the goal is simple. Before humans can link their brains to a simulated world on par with “The Matrix,” they first have to develop a means of interfacing with a basic computer. That kind of technology is not fanciful science fiction. We’ve already successfully inserted brain implants into monkeys, which they’ve used to interface with computers.

At this point, linking a brain to a computer isn’t that great a feat, which is why Musk noted that the first prototypes were being developed to assist quadriplegics. They have much more to gain by being able to interact with a computer. The same can’t be said for most people. Why would they undergo invasive brain surgery just so they could send text messages without typing them?

This is where I believe there’s some untapped potential that Neuralink is in a perfect position to realize. It might even be more feasible in the near-term than memory enhancement, as both a product and a killer app. It’s the kind of function that wouldn’t just convince people to let someone stick electrodes into their brains. It could revolutionize how people communicate with one another.

To understand the extent of that potential, take a moment to look at the last five text messages you sent through your smartphone. It doesn’t matter who you sent them to or why. Just take a step back and consider the strengths and weaknesses of this kind of communication.

In terms of strengths, it’s simple and consistent. It doesn’t matter if you’re a poor speaker or have anxiety issues. As long as you can type out the words and the receiver can read them, you can convey a message that instantly travels from one side of the planet to another. As a communications tool, it’s quite revolutionary, especially when you consider how difficult it was to send messages in the past.

At the same time, it has some major limitations. Texting is so impersonal. Even with the benefit of emojis, it’s still just text on a screen. It can’t convey a sense of nuance or subtext. There’s no undertone to decipher or facial cues to note. While this can make the message more objective, it also makes it feel cold and unemotional. It’s part of why breaking up with someone via text is so taboo.

With those limitations in mind, imagine having the ability to convey a feeling to go along with a text message. Instead of an emoji, you included the emotional context of that message. Maybe you were angry, upset, offended, or elated. It doesn’t have to be too complex. It just has to give a dramatic weight to the emotion.

You send that message knowing the person on the other end could experience it too. They don’t have to read the words and surmise your feelings. They know because they get to experience them too. They feel what you felt when you sent that message. They feel it in a way that no amount of facial cues or subtext can adequately convey.

When you text someone you love them, they can feel your love.

When you text someone you’re angry, they can feel the extent of your anger.

When you text someone you’re seriously depressed, they know it’s not a joke.

This sort of insight is unprecedented. It’s also a function that companies like Neuralink can make a reality and market it as a revolutionary form of communication. It wouldn’t require that we completely abandon our current methods of communication. People would still need their smartphones and computers. This would just be a way of augmenting those tools.

Once a brain implant can link up to a smartphone, then there’s suddenly a new communications channel the likes of which we’ve never had. That channel need not be restricted to moving a cursor or typing out letters on a screen. These commands are simply brain signals coded by implants and transmitted to a device that can make sense of them. Our feelings are just a different kind of signal.

Modern neuroscience already has a comprehensive understanding of where emotions come from. A brain implant could simply take signals from those parts of our brain, code them in a way our smartphone can interpret, and package them in a way that can be transmitted and received by another user.

It’s not telepathy. It’s not complex thought or ideas, either. These are the kinds of feelings and emotions that almost everyone experiences in some form or another. Our natural empathy may allow us to relate to one another as a social species, but we’ve never been able to truly share our feelings in a way that others can experience.

I know the idea of sharing feelings has gained a corny connotation, but I think a part of that has to do with how inefficient our current system is. Even before smartphones and texting, our age-old traditions of talking to one another, deciphering tone, and reading body language has left us with plenty of room for improvement.

It doesn’t matter how empathetic or understanding you are. At the end of the day, when someone shares their feelings, you’re still guessing the details and trying to mirror them within your brain. While that has taken us far as a species, in terms of forming social bonds and coordinating as a group, brain implants could take it to another level.

Once we can transmit our feelings with the same ease we do with a text message, then that takes us into uncharted territory. Armed with this tool, we wouldn’t just be able to communicate over vast distances. We’d be able to convey genuine, intimate feelings. Our brains are already wired to form strong social bonds with others. This technology would effectively supercharge it.

It certainly wouldn’t stop with just two people sending a text message with a happiness emotion attached to it. Once emotions can be transmitted like a text message, then there’s no reason they can’t be shared the same way we share everything else on social media. While some may recoil at the idea of sharing something so intimate, trend is already ongoing. Sharing feelings on a mass scale would just accelerate that trend.

The impact this will have on people is difficult to determine. Like I said before, this is uncharted territory. We’ve never had the ability to both know and share the intimate feelings of other people. Would that make us more empathetic? Would that make us more loving? I’ve argued before that it likely will, but I also don’t deny that some may handle it worse than others.

Whatever form Neuralink’s products take, there’s no denying the potential of this technology. There are still technical and engineering challenges, but that has never scared off Elon Musk or ambiguous billionaires like him. Human beings already have an innate need to connect with one another. Smartphones, texting, and every other communications tool we’ve ever created reflect that desire.

The market for those tools is already strong. The market for something that can communicate on a more intimate level will likely be even stronger. Even if the ultimate goal of Neuralink is to help humanity interact with an advanced artificial Intelligence, a good first step would be to help improve our ability to interact with one another.

Leave a comment

Filed under Artificial Intelligence, futurism, Neuralink, psychology, technology

Guest Post: 5 Highly Recommended Books on Machine Learning (ML) and Artificial Intelligence (AI)

now-ae452835-2617-420e-b8c3-58b5c4668645-1210-680

The following is an article submitted by Harsh Arora, a freelance blogger and writer who shares a similar interest in artificial intelligence, futurism, and the future of the human race. To Mr. Arora, I sincerely thank you for this submission and your continued support.


We would first of all like to welcome all types of readers to our blog – newbies who are just interested about these buzzwords and also experts on the subjects who would like to extend their existing knowledge on the matter. Having established that, it is also imperative to not only define these two concepts (AI and ML) but also to differentiate between them. Although these terms are used synonymously, they are in fact different from one another. AI is the broader level concept where we feed the machine with data and then expect it to take decisions based on that data. ML on the other hand is a subset and application of AI where we feed machines with data and allow them to learn on their own.

Following are the books we recommend for you to learn more about them:

Machine Learning for Absolute Beginners: A Plain English Introduction – Oliver Theobald

It’s easy to see which part of our reader base this particular book is targeted towards. You may be a complete outsider to the world of ML and still be able to understand the granular technical aspects of it through this book. Oliver Theobald assumes no background of programming or coding on the behalf of the reader and allows you to learn right from scratch. It is not only the perfect book for newbies but also experts in the field because it tries to explain the basic concepts in a very coherent and distinct manner. This books not only helps you learn about the concepts of ML but also allows you to unlearn and then relearn them, something is really important for such a subject matter.

The Hundred-Page Machine Learning Book – Andrew Burkov

This is once again a book that will interest not only beginners but also experts in the field. Andrew has really been able to simplify the concepts of ML into basic and easily comprehensible set of cliff notes. With just 100 pages at his disposal, he has really captured the over-arching essence of ML. Though, of course it is not a deep dive into the subject matter like some of our other recommendations, it is however a wonderful summary of it. It is perfect for people who want to understand this technology and its implementations and implications in the real world.

Artificial Intelligence: A Modern Approach (3rd Edition) – Stuart Russell & Peter Norvig

Stuart Russel is one of the sharpest minds working in the field of AI and is a faculty at University of Berkeley. Additionally, he is an Oxford graduate and also holds a PhD from Stanford. In his third edition of the book, Stuart decided to collaborate with Peter Norvig who is currently the R&D Director at Google. Collaboratively, they have created a well-researched and well-defined approach towards understanding modern AI. This book is perfect for students of under-graduate or graduate level courses or even for laymen with the basic understanding of the fundamentals of AI. This long-anticipated edition of its best-seller predecessors offers the most up-to-date and comprehensive understanding of the theory and practice of artificial intelligence.

Machine Learning – Tom M. Mitchell

This is a classic book in which the author has covered the techniques and concepts of the numerous fields and unified them to provide in depth view of ML. Some of the subjects covered include re-enforcement learning, inductive logic programming and genetic algorithms. Tom has tried to simplify these complicated concepts through a clear and explanatory way of writing. At the same time, he has used tools such as case studies and relevant examples to provide a comprehensive overview. Lastly, there is no knowledge of the complex ideas that he has assumed on the part of the reader.

Superintelligence – Nick Bostrom

If you are familiar with the work of Mr. Nick Bostrom, you know you are in for a treat with this book. He takes a different approach to not only explain the artificial intelligence but also the effects it has on our existence. Nick believes that self-aware machines are potentially a bigger threat to humanity than climate change. He has authored over 200 books and his writing forces you to take him seriously in this seemingly sci-fi piece of literature. He helps us understand how the most intelligent form of life i.e. now humans have governed the fate of existence since the dawn. However, with a species (sort of) that has the potential to be smarter than us, what chance is there that they won’t dominate us?

Artificial Intelligence for Humans (Fundamental Algorithms: 1) – Jeff Heaton

If you are planning to build a career in artificial intelligence, this should be your starting off point and you should read it from cover to cover. Jeff Heaton cover several topics in depth such as clustering, distance metrics, dimensionality, linear regression, error calculation and hill climbing. The book takes you through the actual mathematical calculations that you can compute yourself and also see the real-world applications of. However, to build a career in this industry, you must not only understand the basic principals of AI but also of algebra and computer programming. This book will build on those concepts through various computer languages such as C, Java, C#, R and Python.

These books are some of the best in the market and will be perfect for people of all knowledge levels of AI and ML. Given that the industrial revolution 4.0 is upon us and almost all technology is slowly being integrated with it, it is suggested that we all learn more about it. However, it is completely up to you to form opinions about whether or not this technology will be harmful to humans in the long run. Additionally, we also suggest you read up on a few other technologies that are prevalent in this 4.0 era such as IOT, Blockchain and Cloud Computing.

About me: Harsh Arora is a proud father of four rescued dogs and a leopard gecko. Besides being a full-time dog father, he is a freelance content writer/blogger and a massage expert who is skilled in using the best massage gun.

Leave a comment

Filed under Artificial Intelligence, biotechnology, futurism, technology

Neuralink Event: Updates, Insights, And (Big) Implications

finalmente-sapremo-neuralink-progetto-segreto-elon-musk-v3-388343

It’s been a while since I’ve talked about Neuralink. There’s a good reason for that. Even though Elon Musk announced the formation of the company back in 2017, there hasn’t been much news, aside from a few cryptic teases. That didn’t stop me from proclaiming it be one of the most important venture of all time and I still stand by that proclamation.

Finally, on July 16, 2019, we got some news from Neuralink that attracted major press coverage. Musk, in an event that was live-streamed, offered some tantalizing details on the state of the company’s research into advanced brain implants. He didn’t announce that they’d perfected it. However, he did make clear that this is not some crazy idea he just scribbled on a cocktail napkin.

The presentation was lengthy and I encourage everyone to check it out. I’m nowhere near as smart, articulate, or successful as Elon Musk. Very few individuals on this planet are. If for no other reason, watch this event to affirm that he’s serious about merging human brains and machines.

If you don’t have time to watch the whole thing, here a few key points:

  • The first use of this technology will be to treat brain disorders
  • The company has over $150 million and almost 100 employees
  • It has made significant strides in crafting advanced electrodes that can be implanted in a human brain
  • The current prototype utilizes chips that can process brain signals
  • The prototypes have proven functional with rats and monkeys

These insights are intriguing, but they’re not going to change the world overnight. It’s not like we’ll be able to order our own brain implants from Amazon by the end of the year. This technology is still in its infancy. We’ve only recently developed computer hardware that can communicate with brain cells. We’re a long way off from functioning on the level of the Borg.

What Musk laid out wasn’t just a vision. He offered specifics, citing where we are with the technology and who will initially benefit. It makes sense for those with brain disorders to act as the first beneficiaries. Aside from the difficulty of convincing most people to have something put into their brains, these implants could be invaluable at helping quadriplegics improve their lives.

It’s not an impossible feat, having brains interact directly with machines. It has been successfully done with monkeys. It’s just a matter of testing, refinement, and improvement. Like cell phones and Lasik surgery, which I’ve had done, the technology will improve once it has a foundation to build on.

Now, we got a glimpse of that foundation and there’s plenty of reasons for excitement. While nobody can predict the future, especially not as well as someone like Elon Musk, there are some major implications for the near and distant future.

Just controlling a computer with your brain is not the endgame of this technology. Musk stated clearly in the event that the ultimate goal is to create an intimate, symbiotic relationship between humans and advanced artificial intelligence. He sees it as a necessary relationship if we’re to minimize the existential threat posed by AI.

Before we get to that goal, though, it’s almost a given that this technology will find other uses and markets. One market that wasn’t mentioned in the presentation, but could prove very lucrative, is gaming.

As much as video game technology has advanced since the early days of Nintendo, the controls haven’t evolved much. We still need a keyboard or a controller to interact with the system. As someone whose reflexes were rarely fast enough while playing Mike Tyson’s Punch Out, I can appreciate those limitations more than most.

Imagine an interface where moving a character or a cursor required only your thoughts. Suddenly, you’re no longer restricted to button sequences and analog sticks. The controls only limited by your brain’s ability to give the necessary commands. Whether you’re playing an old Mario game or Grand Theft Auto V, you guide everything along with your thoughts.

Considering the gaming industry is a multi-billion dollar industry, the incentives for innovation are strong. If a brain interface offers novelty or advantages for gaming, then Neuralink is in a position to reap the benefits.

Those same benefits extend beyond the gaming industry. While it may take a while for an implant to process the complex controls of a video game, it might not take as long to create one with the ability to give wielders more direct control of their smartphone. Some may recoil at the thought of being that connected with their smartphone, but the benefits may be too good to pass up.

I can easily imagine an interface that not only helps people type messages faster, but provides better security than passwords, fingerprints, or facial recognition. Hackers might be able to crack a password, but brain signals would pose a far more daunting challenge.

This kind of interface also opens the door to a more intimate forms of communication. It’s one thing to just send texts and emails with our phones. What if we could send codes through brain implants that actually convey feelings and emotions? Instead of emojis, we could just send a coded message from one implant to another that conveys anything from happiness to shock to sarcasm.

That level of communication wouldn’t just be groundbreaking. It would change the way human beings interact. Again, it would be somewhat rudimentary at first, but with refinement, it could open entirely new channels for those who take advantage of this technology.

These are just some of the possibilities. The implications for the distant future are big, but the possibilities for the near future are just as tantalizing. Right now, the near-term goal revolves around helping brains interact with computers. At the moment, those computers are not advanced AIs. When that time comes, though, we’ll at least have a channel for that interaction.

These are exciting times, indeed. This is not just some eccentric billionaire’s crazy vision. This is really happening. There have been many technological advances that have changed our lives, but this technology may ultimately change much more than that.

3 Comments

Filed under Artificial Intelligence, futurism, Neuralink, Sexy Future

How Humanity Will Cure Death

immortality

When it comes to pushing the limits of technology, every goal once started as a fantasy. In the 19th century, the smartest minds of the time thought heavier-than-air flying machines were infeasible at best and impossible at worst. In the early 20th century, other people with legitimate scientific credentials said the same thing about a manned mission to the moon.

While it seems absurd today, at the time it made sense. The people of that era just couldn’t imagine technology advancing to a point where humanity regularly achieved feats that had once been relegated to science fiction. It’s easy it mock them with the benefit of hindsight, but there are plenty of smart people today who have made claims that will be mocked 50 years from now.

One claim that most individuals, including those who work at the forefront of science and research, is that we will never cure death. Science is certainly capable of doing a great deal, but death is one of those immutable barriers that it can never overcome.

We may be able to cure all infectious disease through biotechnology and genetic engineering. We may one day have technology that allows our bodies to become so durable that from the perspective of people alive today, they’ll be superhuman. They may even live for centuries, but never age past 30. Nothing other than a freak accident could kill them. I’ve already noted the potential issues with that.

However, even these highly-enhanced humans will eventually die at some point. That seems like a given. Efforts to avoid it are often subject to heavy criticism, especially approaches like cryonics or uploading your mind into a computer. While some of those criticisms are valid, they’re also short-sighted. They work under the same assumption as those who claimed humans would never walk on the moon.

Technology has limits, but humans have a bad track record with respect to understanding those limits. With respect to curing death, even the most advanced fields of emerging technology seem limited in their ability to help people escape such a fate. That doesn’t mean the concept is flawed. It doesn’t even mean that the technology is beyond the laws of physics.

Personally, I believe death can be cured, but not with approaches like cryonics or bodily enhancements. While those technologies may ultimately extend our lives, being able to transcend death requires another approach. Specifically, it requires a mechanism for preserving, transforming, and transferring the contents of our brains.

Medically speaking, the official definition of death is the irreparable cessation of all brain activity. Your body can be damaged. Every other organ could fail. Your brain is the last link in that chain. It contains your memories, your emotions, your personality, and your capacity to experience the world. To cure death, we simply need to preserve the brain and all its functions.

That’s much harder than it sounds, but it’s not physically impossible. The human brain is not made up of some mythical, exotic material. It’s made up of specialized cells and tissues, like any other organ. While we don’t entirely understand the workings of the brain, it operates using physical matter that is bound by the laws of physics and biology.

Those limits are the key and the mechanism for preserving that complex clump of biomatter already exists, both as a concept and in a very unrefined form. That technology involves nanobots and if there’s one technology that has the potential to make humans truly immortal, it’s this.

The concept of nanobots is already a common staple of science fiction, but it’s primarily used as the technological equivalent of a wizard’s spell. If you need something or someone to do the impossible without resorting to magic, just throw nanobots or nanites, as they’re often called, into the story and let the impossible seem mundane.

While it’s doubtful that nanobots can do everything that science fiction claims, there’s a good chance that they’ll come pretty close. It’s impossible to overstate the potential of nanorobotics. From mass-producing any kind of good to curing humans of all infectious disease, nanobots have the potential to literally and figuratively change our lives, our bodies, and our world.

At the moment, we only have crude prototypes. In time, though, nanobots could become something akin to programmable matter and, by default, programmable flesh. Technically speaking, a nanobot could be programmed to do whatever a typical brain cell does, but more efficiently.

In the late 90s, scientists like Robert Freitas Jr. envisioned nanobots called respirocytes, which functioned like artificial blood cells. In theory, these would be far more effective at getting air and nutrients to the rest of your body, so much so that you could hold your breath for hours or sprint indefinitely.

That’s all well and good for deep sea diving and Olympic sprinters, but for curing death, the concept needs to go even further. That means creating nanobots that mimic the same function as a neuron, but with more efficiency and durability. Create enough of those and you’ve got the exact same hardware and functionality as the brain, but with the utility of a machine.

Once we have that technology refined and perfected, we have everything we need to effectively cure death. Doing so means gradually replacing every neuron in our skulls with a more efficient, more durable nanobot that does everything that neuron did, and then some. The most important additional feature these nanobots would have is a measure of intelligence that could be programmed.

By being programmable, the nanobots in our skulls would be more plastic. It would be less an organ and more a synthetic substrate, of sorts. It could be drained into a container, implanted into a robot specifically designed to contain it, or just preserved indefinitely in the event that there are no bodies available, not unlike the systems used in, “Altered Carbon.”

To some, this still doesn’t count because it requires that every cell in our brains be replaced with something. Technically, that brain wouldn’t be yours and you might not even be use, as a result. I respectfully disagree with this criticism, primarily because it ignores the whole Ship of Theseus argument.

If you’re not familiar with this concept, it’s pretty simple, but the implications are profound. It starts with a real, actual ship used by the mythical hero, Theseus. If, at one point, you replace a piece of wood in that ship, it’s still the same ship. However, the more pieces you replace, the less of the original ship you have. Eventually, if you replace all pieces, is it the same ship?

The human brain, or any organ in your body, is an extreme version of that thought experiment. The brain cells can replicate, but it’s a slower process compared to most cells and the configurations are always changing. The way your brain is wired now is changing as you read this sentence. A cluster of nanobots doing the same thing won’t be any different.

Like the Ship of Theseus, it wouldn’t happen all at once. In principle, the brain cell doesn’t even get destroyed. It just gets subsumed by the mechanizations of the nanobot. How it goes about this is hard to determine, but there’s nothing in the laws of physics that prohibit it. At the molecular level, it’s just one set of atoms replacing another.

Once in place, though, the limits of biology go out the window. With programmable nanobots, a person doesn’t just have the same functionality as a biological brain. It’s has other functions that allow for easier programming. We could, in theory, supplement the nanobots with additional material, sort of like cloud computing. It could even create a neurobiological backup of your brain that could be kept in stasis.

At that point, death is effectively cured. Once your brain becomes a substrate of nanobots, you can just transfer it into a body, a robot, or some other containment vessel that allows it to experience the world in any way desired. If, by chance, that body and the substrate are destroyed or damaged, then the backup kicks in and it’ll be like you just jumped from one place to another.

Some of this relies on an improved understanding of how consciousness works and assumes that it could be somehow transferred, expanded, or transmitted in some way. That may very well be flawed. It may turn out to be the case that, even if you turn your brain into a glob of nanobots, you can’t transmit your consciousness beyond it. If it gets destroyed, you die.

There’s a lot we currently don’t understand about the mechanisms of consciousness, let alone our ability to manipulate those mechanisms. However, a lack of understanding doesn’t negate the possibilities. Our previous inability to understand disease didn’t prevent our ancestors’ ability to treat it to some extent.

If it is the case that we cannot transmit consciousness from our brains, then we can still craft a functional cure for death. It just requires that we put our brains in protective vats from which carry out our existence in a simulated world. Those vats could be protected in a massive artificial planet that’s powered by a black hole or neutron star. In theory, our brains would be preserved until the heat death of the universe.

Whatever the limitations, the technology and the concepts are already in place, if only on paper. It’s difficult to know whether anyone alive today will live long enough to see an advancement like this. Then again, the children alive in 1900 probably didn’t think they would live to see a man walk on the moon.

2 Comments

Filed under Artificial Intelligence, futurism, Sexy Future, technology

How Technology Will Change Professional Sports

cyborg

In 2008, the International Association of Athletics Federations issued a momentous ruling. From that day forward, double-amputees who used specialized blade prostheses were not permitted in Olympic competition. However, it wasn’t because that double-amputees were at an inherent disadvantage. It was because these high-tech prostheses made runners too fast.

Think about that for a moment. When someone loses their legs, it’s devastating. Their lives will never be the same. Never mind hindering their ability to participate in Olympic-level events. They will be forever handicapped, unable to conduct themselves in an able-bodied society. For most of human history, this was a sad reality.

Suddenly, advances in technology have flipped the script. Existing research on these blade prostheses shows that those using them expend significantly less energy to sustain their top running speed compared to their able-bodied counterparts. Now, a double-amputee actually has an advantage in a race, especially one that relies on stamina.

The implications go beyond helping double amputees live normal lives. This marks a critical turning point for technology and sports, alike. For once, able-bodied athletes are at a disadvantage and that gap is only going to get wider. I’ll go so far as to say that in the next few decades, professional sports will undergo enormous change due to technology.

That’s not an overly bold prediction. Technology and medicine have been enhancing sports for decades. I’m not just talking about the use of performance enhancing drugs, either. There are certain medical procedures, such as Tommy John Surgery, that can give professional athletes a competitive advantage. They’re so common these days that neither athletes nor fans think much of it.

On top of that, advances in medicine have made injuries that once ended careers into extended injuries. Just a few decades ago, an NFL player who tore their ACL was likely finished. Today, such an injury still means an extended stay on the injured list, but players can come back from it. Some even manage to have MVP caliber seasons.

In the future, more advanced treatments involving stem cells or lab-grown body parts will further improve injury treatment. Given the billions in profits generated by professional sports and the massive incentives to keep star athletes healthy, there’s are plenty of reasons to push this technology forward. Before long, star quarterbacks in the NFL playing into their 40s might not be so extraordinary.

However, recovering from injuries is only a small part of a much larger upheaval that’s set to occur in the world of sports. The entire concept of competition may need revising as technology reaches a point where maintaining parity is almost impossible. Unlike performance enhancing drugs, it won’t be possible to test for them or remove them.

Today, it’s easy to appreciate how gifted the best athletes in the world are. It takes a lot of hard work, dedication, and effort to achieve the mental and physical prowess that allows these individuals to be at the top of their game. To build muscle, you need to spend hours in the gym. To master a skill, you need to spend years practicing and honing your mechanics.

All that work and training, however, has the same goal. The intent is to strain the body to make it stronger and wire the mind to make it more capable. At a fundamental level, it’s just restructuring the body and brain with a mix of brute force and mental effort. Modern medicine and technology can help supplement those efforts, but only to a point.

That point, however, keeps changing and will continue to change. Think back to emerging technology like Neuralink’s brain implants. Instead of spending years learning the mental aspect of a sport, why not just use an implant that mirrors the neural patterns of athletes like Tom Brady or LeBron James? They’ve already done the work. In theory, all you have to do is mimic their neural connections.

That technology is a long way off, but accelerated learning is already an emerging field in the military. It’s only a matter of time before some enterprising sports league attempts to use it. A technology that may be closer and more controversial is biohacking. I’ve mentioned it before, but it has the potential to complicate any competition.

We already know how to use genetic engineering to build bigger muscles without steroids. That same technology could be refined to impart other advantageous traits like better reaction time, quicker reflexes, and enhanced bone strength. Unlike other drugs, it wouldn’t require athletes to take pills. These skills would be written right into their genetics, which means it won’t show up on a typical drug test.

Push this technology even further and the world of professional sports gains even more complications. As time goes on, the forces of medicine, biotechnology, nanotechnology, and machine/human interface will steadily converge. We’ll get to a point where enhancing the human body is akin to upgrading our computers.

Instead of regular natural cells, we’ll rely on entirely synthetic cells that are programmable and capable of achieving more than even the best athletes of today.

Instead of intense mental training, we’ll be able to link our brains to computers to effectively learn the skills we need, whether it involves throwing a baseball or weaving baskets.

Instead of waiting for damaged body parts to heal, we’ll just swap them out for newer, better models that are much more efficient and capable.

Under such conditions, the current system for professional sports just couldn’t work. If every new quarterback could just copy the skills and experience from Tom Brady’s brain, then what’s the point of competing in the first place? If every NBA team has as much talent as the 2018 Golden State Warriors, then how does competition even work at that level?

The questions get even more profound when applied to Olympic competition. If we get to a point where double amputees run faster and those with robotic arms throw harder, then that changes the entire approach. Sure, some may still prefer seeing non-enhanced humans compete, but their feats won’t be as spectacular.

Instead, imagine events where javelin throwers can use robotic arms or swimmers could use bionic lungs. The feats they’ll achieve won’t just be better, in terms of stats. They’ll be a far greater spectacle. Given the declining ratings of the Olympics in recent years, I suspect future events will need those spectacles to maintain interest.

Personally, I would definitely watch the Olympics if it had athletes that utilized cybernetic enhancements, be they artificial limbs or brain implants. It would require a mix of both athletic training and applied science to achieve championship status. It won’t be the same as simply winning the race through sheer grit, but it will still be an achievement worthy of a metal.

What is the future of professional sports?

What is the future of professional athletes?

How will people compete in a world where the human body can be enhanced, programmed, and modified at will?

These are questions that none of the major sports leagues have to answer immediately, but they will start to become more relevant in the coming years. The fact that some of the prosthesis we give double-amputees are better than regular human legs is the first tangible step towards a very different future for professional sports.

Leave a comment

Filed under futurism, human nature, sports, technology

The First Genetically Modified Humans Have Been Born: Now What?

designerbabies

When the USSR launched Sputnik 1 on October 4, 1957, it didn’t just kick-start the space race. It marked a major technological paradigm shift. From that moment forward, venturing into space wasn’t just some futuristic fantasy. It was real and it had major implications for the future of our species.

On November 26, 2018, a Chinese scientist named He Jiankui announced that the first genetically modified humans had been born. Specifically, two twin girls actually had their genetic code modified at the embryonic stage to disable the CCR5 gene to make them highly resistant to HIV/AIDS. In the history of our species, this moment will likely exceed the importance of Sputnik.

This man may have just upstaged Neil Armstrong.

To appreciate why this is such a big deal, consider the full ramifications of what Mr. Jiankui achieved. The change he made to the genome of those girls was impossible for them to inherent. This particular allele is a result of a mutation within a small population of Northern Europeans and is present in no other ethnic group. It is best known for providing significant immunity to common strains of the HIV virus.

This is of significant interest to China because they’ve been dealing with a surge in HIV/AIDS rates in recent years. Even though AIDS isn’t a death sentence anymore, the medicine needed to manage it is costly and tedious. These two girls, who have not been publicly named thus far, may now have a level of resistance that they never would’ve had without genetic modification.

On paper, that’s an objective good. According to the World Health Organization, approximately 35 million people have died because of AIDS since it was first discovered and approximately 36.9 million people are living with the disease today. It’s in the best interest of society to take steps towards preventing the spread of such a terrible disease, especially in a country as large as China.

However, Mr. Jiankui has caused more consternation than celebration. Shortly after he announced the birth of the two unnamed children, China suspended his research activities. Their reasoning is he crossed ethical boundaries by subjecting humans to an untested and potentially dangerous treatment that could have unforeseen consequences down the line.

Those concerns have been echoed by many others in the scientific community. Even the co-inventor of CRISPR, the technology used to implement this treatment and one I’ve cited before as a game-changer for biotechnology, condemned Mr. Jiankui’s work. It’s one thing to treat adults with this emerging technology. Treating children in the womb carries a whole host of risks.

That’s why there are multiple laws in multiple countries regulating the use of this technology on top of a mountain of ethical concerns. This isn’t about inventing new ways to make your smartphone faster. This involves tweaking the fundamental code of life. The potential for good is immense, but so is the potential for harm.

Whether or not Mr. Jiankui violated the law depends heavily on what lawyers and politicians decide. Even as the man defends his work, though, there’s one important takeaway that closely parallels the launch of Sputnik. The genie is out of the bottle. There’s no going back. This technology doesn’t just exist on paper and in the mind of science fiction writers anymore. It’s here and it’s not going away.

Like the space race before it, the push to realize the potential of genetic modification is officially on. Even as the scientific and legal world reacts strongly to Mr. Jiankui’s work, business interests are already investing in the future of this technology. The fact this investment has produced tangible results is only going to attract more.

It’s impossible to overstate the incentives at work here. Biotechnology is already a $139 billion industry. There is definitely a market for a prenatal treatment that makes children immune to deadly diseases. Both loving parents and greedy insurance companies have many reasons to see this process refined to a point where it’s as easy as getting a flu shot.

Even politicians, who have historically had a poor understanding of science, have a great many reasons to see this technology improve. A society full of healthy, disease-free citizens is more likely to be prosperous and productive. From working class people to the richest one percent, there are just too many benefits to having a healthy genome.

The current climate of apprehension surrounding Mr. Jiankui’s work may obscure that potential, but it shouldn’t surprise anyone. During the cold war, there was a similar climate of fear, albeit for different reasons. People back then were more afraid that the space race would lead to nuclear war and, given how close we came a few times, they weren’t completely unfounded.

There are reasons to fear the dangers and misuse of this technology. For all we know, the treatment to those two girls could have serious side-effects that don’t come to light until years later. However, it’s just as easy to argue that contracting HIV and having to treat it comes with side-effect that are every bit as serious.

As for what will come after Mr. Jiankui’s research remains unclear. I imagine there will be controversy, lawsuits, and plenty of inquiries full of people eager to give their opinion. As a result, he may not have much of a career when all is said and done. He won’t go down in history as the Neil Armstong of biotechnology, but he will still have taken a small step that preceded a giant leap.

Even if Mr. Jiankui’s name fades from the headlines, the breakthrough he made will continue to have an impact. It will likely generate a new range of controversy on the future of biotechnology and how to best manage it in an ethical, beneficial manner. It may even get nasty at times with protests on par or greater than the opposition to genetically modified foods.

Regardless of how passionate those protests are, the ball is already rolling on this technology. There’s money to be made for big business. There’s power and prosperity to be gained by government. If you think other countries will be too scared to do what a science team in China did, then you don’t know much about geopolitics.

Before November 26, 2018, there were probably many other research teams like Mr. Jiankui who were ready and eager to do something similar. The only thing that stopped them was reservation about being the first to announce that they’d done something controversial with a technology that has been prone to plenty of hype.

Now, that barrier is gone. Today, we live in a world where someone actually used this powerful tool to change the genome of two living individuals. It may not seem different now, but technology tends to sneak up on people while still advancing rapidly. That huge network of satellites that now orbit our planet didn’t go up weeks after Sputnik 1, but they are up there now because someone took that first step.

There are still so many unknowns surrounding biotechnology and the future of medicine, but the possibilities just become more real. Most people alive today probably won’t appreciate just how important November 26, 2018 is in the history of humanity, but future generations probably will, including two remarkable children in China.

3 Comments

Filed under futurism, gender issues, sex in society, Sexy Future, technology

Memory Enhancement: The First Killer App For Neuralink?

ai-brain-600x501

Every new technological innovation promises to change the world, but few end up delivering. I still remember the overblown hype in the early 2000s when the Segway Personal Transporter was supposed to revolutionize the world. It was such a big deal that “South Park made an episode about it.

The concept was intriguing, improving mobility for people in a way that was less bulky than a car and less taxing than a bicycle. I think its inventor, Dean Kamen, envisioned a world where the entire urban landscape changed as a result of his invention. I don’t doubt for a second that he believed in that vision.

However, like so many other ambitious inventions, it never came to pass. These days, the only place you’ll see Segways is malls and stadiums. It didn’t revolutionize mobility or transportation. Its use and appeal was just too limited.

Kevin James would argue otherwise.

Compare that to enormous impact of other inventions like smart phones. From the BlackBerry to the first iPhone, these devices have literally changed the world. How they brought about that change varies, but the key factor that set them apart from the Segway was the idea of a “killer app.”

You could argue that smartphones invented the term, but the idea is much older. A killer app isn’t as much an innovation as it is a use that goes onto be so popular that it further advances the technology behind it. Smartphones had many, from cameras to translation applications. As a result, they’re both a multi-billion dollar industry and an integral part of our lives.

Given the current pace of technological change, it’s only a matter of time before another innovation comes along that has a similar impact. That technology might actually exist now, but lack the killer app that will make it both a valuable market and a major part of our lives. One such technology is brain implants this technology has the potential to be even bigger than smartphones.

I’ve mentioned brain implants before. I’m even guilty of hyping it up a little. I’ve gone so far as to call it the most important technological advance in history, citing companies like Neuralink as the arbiters of this monumental change. Since I’m not a scientist and I’m not Elon Musk, it’s very likely I’m overstating many aspects of this technology.

Hype or no hype, brain implant technology is an emerging field. This isn’t a warp drive. This technology actually exists. Like the old brick-sized cell phones of the 1980s, they’re basically prototypes in need of both refinement and a killer application. The refinement is ongoing, but that one application to really further this technology isn’t as clear.

Now, and I apologize if this sounds like more overdone hype, there may be one use that could prove even more useful than a smartphone. That use is memory enhancement. If you don’t think people are willing to risk putting something in their brains to boost their memory, then you’ve clearly never crammed for a Spanish exam for three hours trying to memorize conjugations.

Think back to any situation where you wish your memory didn’t suck. Even if you’re not in school or college, how often do you forget something that no reasonable person should forget? Let’s face it. Most brains aren’t wired with a photographic memory. It’s not that it isn’t useful. There’s just little survival benefit to having one unless you’re a world class scientist or mathematician.

Since photographic memories are so uncommon, and some doubt they even exist to the extent people believe, a specialized brain implant could change all that. Modern neuroscience has a solid understanding of how memories are formed in the brain. In theory, an implant would just augment or expand those functions.

It’s not even entirely a theory. In early 2018, the New York Times reported that a study utilizing brain implants in human test subjects showed a significant improvement in memory function. It was a simple study, but the effect is real.

In the study, the research team determined the precise patterns for each person’s high-functioning state, when memory storage worked well in the brain, and low-functioning mode, when it did not.

The scientists then asked the patients to memorize lists of words and later, after a distraction, to recall as many as they could.

Each participant carried out a variety of tests repeatedly, recalling different words during each test. Some lists were memorized with the brain stimulation system turned on; others were done with it turned off, for comparison.

On average, people did about 15 percent better when the implant was switched on.

While 15 percent may not sound like much, it’s still important because it proves the concept. Like that first bulky cell phone in the 1980s that could barely make a call out of New York City, it shows that this idea does work and can be done with our current tools. It’s just a matter of refining those tools and improving the process.

Those refinements will find a market that is already ripe with people anxious to improve their memory and overall cognitive function. In recent years, the use and abuse of mind-enhancing drugs like Adderall is growing. I can personally attest that this happens.

When I was in college, I knew more than a few students who would do double doses before exams. If you think putting something in your brain is dangerous, then take a moment to appreciate the fact that drugs like Adderall are very similar to methamphetamine. One is available by prescription. The other is the basis of a hit TV show about drug dealing.

There is both a demand and a market for enhancing memory. Unfortunately, that market is dominated by supplements that don’t work and study programs run by convicted fraudsters. Unlike these costly and potentially harmful methods, a brain implant could actually work. It could enhance our memories to a point where we could read a dictionary in Swahili and remember every word.

This doesn’t just mean lost car keys are a thing of the past. This means our entire approach to learning, education, and training completely changes. A lot our modern education system, as well as training for doctors, lawyers, and scientists, relies heavily on memorizing large chunks of information. It takes years of constant and careful study to understand all that information. What happens when that is no longer the case?

Imagine a world where people can learn a new language in the span of a week.

Imagine a world where people can learn complex legal and medical procedures in only months.

Imagine a world where people can learn new software coding in just a few days.

If you’re a sports fan, imagine a world where football players can memorize an entire playbook in just a couple days. What will that do to the NFL Draft?

With a memory enhancing brain implant, it’s not just possible. It’s a potential game-changer. There are so many uses to having a good memory, just as there are so many uses for a smartphone. We had no idea that smartphones would lead to applications like Snapchat or Tinder. I doubt anyone has an idea on the impact that memory-enhancing brain implants will incur.

It won’t happen all at once. It took years for smartphones to become prevalent and unlike smartphones, this advance involves putting something in your brain. Then again, people are perfectly willing to put dangerous chemicals in their bodies to enhance their bodies so I don’t think that’s too great a barrier to overcome.

There are, of course, far greater applications for brain implants beyond acing final exams. I’ve mentioned a few of them, but those applications won’t be possible until the technology becomes a thriving market. For an advance like brain implants, it only takes one app to get the engines of innovation going. Memory enhancement may very well be that app.

It’s just a shame it came too late to help me with my Spanish exam.

1 Comment

Filed under Artificial Intelligence, futurism, human nature, psychology, Sexy Future