Tag Archives: genetics

Why Designer Babies Are NOT The Same As Eugenics

david20catalano

As much as I celebrate advances in science and technology, I don’t deny there are instances where some advances it leads to unintended consequences. I’m sure the inventor of ski masks knows that all too well. In many cases, these missteps and mishaps are part of the ongoing challenge to use these advances responsibly. It’s akin to a maturation process that is often difficult, but still necessary.

In some cases, however, certain advances bring out some of humanity’s ugliest traits. Whether it’s a tool or an insight into the natural world, certain people who may or may not be malicious will use science to further a nefarious agenda. Of all the sciences that brought out the worst in humanity, eugenics is probably the most well-known.

The concept, itself, is not entirely abhorrent. If you look up the definition, this is what comes up.

The practice or advocacy of controlled selective breeding of human populations to improve the population’s genetic composition.

On paper, that has some objective merit. The world is a chaotic, dangerous place that’s constantly changing. In some cases, humanity is causing that change. If we’re to survive on a planet in which 99 percent of the species that have ever lived have gone extinct, it makes sense to improve our collective genetics so that we’re best equipped to survive.

Unfortunately, the details surrounding eugenics were permanently tainted when it became the preferred excuse for atrocities by the Nazis. Even before that, it was a popular talking point among racists seeking to marginalize or outright exterminate the impact of certain minorities within a society. At one point, there were organizations dedicated to promoting eugenics through forced sterilization and miscegenation laws.

The legacy of eugenics is so ugly that it’s almost synonymous with some of the worst acts of bigotry ever committed. When people think of eugenics, they don’t think of advancing human biology to make it more robust. They imagine racist tyrants forcibly sterilizing undesirable minorities in the hopes that they eventually die out in a silent genocide.

There’s no question that this form of eugenics is abhorrent. The way it was practiced throughout the 20th century was a perversion of science and technology. We would be wise to remember that as we make bigger and bolder advancements in science, especially for those related to biotechnology.

It’s here where the ugly legacy of eugenics seems destined to clash with science once more. In late 2018, news broke of a groundbreaking advance in biotechnology when a scientist named He Jiankui announced that the first genetically modified humans had been born. I went out of my way to note why this is a huge deal in the history of our species, but it’s also sparking distressing concerns related to eugenics.

Thanks to gene-editing tools like CRISPR, it’s now possible to edit the human genome with the same ease as copying and pasting text from a website. That has sparked concerns that it will be used to purge certain undesirables from the human population, just as was attempted with eugenics.

Logistically, there’s no reason why tools like CRISPR couldn’t be used to edit the genome of every child before they’re born to ensure they look a certain way. Granted, it would require some fairly invasive policies, but that has never stopped ambitious governments in the past. As these tools are refined, it’ll only get easier to pursue the kinds of racist policies that deplorable bigots in the past once favored.

However, this is not a fair association, nor is it constructive in addressing the legitimate issues surrounding the use of CRISPR and so-called designer babies. Linking this technology to eugenics is akin to blaming every nuclear physicist for the destruction of Hiroshima and Nagasaki. It’s not just because the potential of this technology is so great. The intent behind it differs considerably with that of eugenics.

That intent shows in the specifics of the first two genetically modified children. These children were not born out of a desire for racial superiority. The modifications made to their genome was intended to make them more resistant to HIV/AIDS infection. That’s an objective good. Healthier babies who are more resistant to disease is a benefit to our species, as a whole.

In addition, this feat was achieved without sterilizing someone against their will or without the consent of the parents. While there were some legitimate ethical concerns, the underlying purpose has little to do with furthering racial goals and more to do with combating disease and suffering. This is where the difference between eugenics and designer babies at its most stark.

Eugenics, historically speaking, was almost always pursued with a racial agenda. It never stopped at just treating disease. Its advocates sought more than just health. They sought superiority. That’s not how the emerging technology surrounding CRISPR is being used. It’s following a similar path to that of in-vitro fertilization, which was subject to plenty of controversy as well.

Like any technology, there are going to be legitimate concerns mixed in with the doomsayers. With CRISPR and designer babies, the concerns will be greater because the stakes will be higher. We’re not just talking about a technology that will reduce the risk of inherited diseases. This technology could fundamentally change the human race in a very literal sense.

Designer babies, much like their in vitro counterparts, will be part of that change. Regardless of how someone feels about endowing a baby with the genetics of Tom Brady and Stephen Hawking, the potential for good is just too vast. Thousands of people die every year because of diseases that are written into their genes. This technology, if properly refined, could render such suffering a distant memory.

Hesitating with this technology because of potential links to eugenics will only prolong this suffering. In the same way countless individuals wouldn’t be alive without in-vitro fertilization, there are countless people who aren’t alive now because this technology wasn’t available to help them.

Treating diseases and ensuring the health of the next generation is a common good that eugenics corrupted with racist ideology. It attempted to do that by using science and technology to more effectively oppress their chosen enemies. That is radically different than editing the genes of a child so they don’t succumb to certain diseases.

That’s not to say there aren’t risks. At some point, someone will try to abuse this technology and it’s likely that person will have unpopular views on eugenics. There will also be a point where this technology isn’t just used to treat diseases. It will also be used to implement traits and abilities within people that aren’t possible by natural means.

The look of a baby who never has to worry about genetic diseases.

The merits and ethics of such genetic tampering are definitely worth discussing, but references to eugenics will only serve to derail that discussion for all the wrong reasons. Like it or not, humans will need to keep adapting and growing in our chaotic world. If we ever hope to outlast our planet and even our sun, we can’t be bound by genetic constraints or outdated attitudes.

That makes developing genetics technology all the more vital. Eugenics was a bad ideology that hijacked a lot of good science. Whatever your opinion may be on designer babies and improving the human genome, the technology is here. Children born of this technology have arrived. The benefits are vast, provided we have the right approach.

Leave a comment

Filed under futurism, human nature, sexuality, technology

The (Other) Implications Of The Technology In “Jurassic World”

maxresdefault1

Movies and TV have a long and colorful history of predicting future technology. The predictions made by “The Simpsons,” alone, are as uncanny as they are creepy. Even when they get the basic laws of physics horribly wrong, they can provide insight into the trends that may very well define our future.

On the spectrum of movies that envision future technology, the “Jurassic Park” franchise occupies a strange part of that spectrum. The original movie, as beloved and successful as it is, did a poor job of predicting the potential of genetic engineering. The entire plot of the movie hinged on the ability of scientists to find sufficiently intact DNA from a 65-million-year-old mosquito and use that to recreate dinosaurs.

Anyone with a passing knowledge of math and the half-life of DNA knows that’s just not possible in the real world. No matter how well-preserved a fossil is, the bonds holding DNA together dissolve completely after about 7 million years so the scientists in “Jurassic Park” wouldn’t even have fragments to work with.

That’s not to say it’s impossible to bring back an extinct species. If you have intact DNA, and we do have it for extinct animals like Mammoths, then there’s no reason why science can’t recreate a creature that no longer exists. The only challenge is gestating the animal without a surrogate, but that’s just an engineering challenge that will likely be solved once artificial wombs are perfected.

Even with that advancement, it would be too late for dinosaurs. Technically, if you had enough working knowledge of how DNA works and how to create an animal from scratch, you could create something that looked like a dinosaur. In fact, it’s already a popular fan theory that none of the animals in “Jurassic Park” were actually dinosaurs. It’s one of the few fan theories that might have been confirmed on screen.

Those theories aside, it’s the the technology on display in “Jurassic World” that has far greater implications. By that, I don’t mean it’ll bring back dinosaurs or other extinct species. It may actually do something much more profound.

Unlike the original movies, both “Jurassic World” and the sequel, “Jurassic World: Fallen Kingdom,” don’t stop at just bringing back dinosaurs. These movies take place in a world where that spectacle isn’t that exciting anymore. As a result, they start splicing the DNA of other dinosaurs together to create new species, namely the Indominous Rex and the Indoraptor.

While this creates for great action scenes and plenty of dinosaur-driven combat, the true implications of this technology are lost in the spectacle. Take a moment to consider what the science within these movies accomplished. Then, consider what that means for the real world and the future of the human race.

These dinosaurs were not the product of evolution. Evolution works within some pretty rigid limits. It’s a slow, clunky, arduous process that takes a lot of time and a lot of extinction. On top of that, the basic laws of heredity and the inherent limits of hybridization ensure that the transmission of certain traits are next to impossible through natural means.

However, as Dr. Wu himself stated in “Jurassic World,” there’s nothing natural about what what they did. Essentially, the scientists in that movie used the genetic and evolutionary equivalent of a cheat code. There were no barriers to combining the DNA of a T-Rex with that of a Raptor. They just cut and pasted DNA in the same way you would cut and paste text on a word document.

That should sound somewhat familiar to those who have followed this website because that’s exactly what CRISPR does to some extent. It’s basically the cut function for DNA and it exists in the real world. The paste function exists too, although it’s not quite as refined. To that extent, “Jurassic World” is fairly accurate in terms of the technology they used to create the Indominous Rex and Indoraptor.

That’s not to say it’s possible to create the exact same creatures depicted in the movies. There are various anatomical limits to how big, fast, or smart a creature can be, even if there are no genetic barriers to contend with. I don’t know if the creatures created in “Jurassic World” could function in the real world, but the science for making them does exist, albeit in a limited capacity.

That, in and of itself, is a remarkable notion and one that makes the original “Jurassic Park” seem slightly more incredible. If anything, the original movie underestimated the progress that science would make in genetic engineering. That movie just had science rebuilding life from the remnants of existing creatures. We’ve already progressed to the point where we’re starting to make synthetic life from scratch.

This kind of technology has implications that go far beyond bringing extinct animals back from the dead or creating new ones that make for great fight scenes in a movie. It actually has the potential to circumvent evolution entirely in the struggle for survival. “Jurassic World: Fallen Kingdom” even explores this concept, but only to a point.

Without getting too deep into spoiler territory, this movie builds on the same genetics technology that “Jurassic World” introduced with the Indominous Rex. However, it isn’t just applied to dinosaurs. The sequel dares to contemplate how this technology could be used on humans or to supplement human abilities.

It’s not that radical a concept. Humans have, after all, used technology and breeding techniques to domesticate animals that have aided our efforts to become the dominant species on this planet. That process is still hindered by the hard limits of biology. The process in “Jurassic World: Fallen Kingdom” is not bound by those limits.

In this movie, dinosaurs go beyond a spectacle at a theme park. They suddenly become a potential asset to further augment human abilities. Some, such as Jeff Goldblum’s character, Ian Malcolm, would argue that such creatures pose a risk to humanity’s survival. I doubt I’m as smart as Dr. Malcolm, but I’d also argue that he’s underselling just how dominant human beings are at the moment.

Maybe if dinosaurs had come back 1,000 years ago when humans were still using swords, spears, and arrows to fight animals, we might have had a problem. Today, humans have access to machine guns, tanks, and combat drones. Even the apex predators of the Jurassic don’t stand a chance.

I would further argue that the same technology that the scientists in “Jurassic World: Fallen Kingdom” used to make the Indoraptor is even more valuable in terms of how it can affect humans. After all, if you can copy and paste desirable traits into a dinosaur, then you can do the same to a human.

Doing that might cause plenty of ethical issues that Dr. Malcolm has articulated before, but there’s one factor that overshadows all those arguments and that’s the survival of our species. Let’s face it, the human has its limits. We can’t breathe underwater. Our skin is soft and vulnerable. Our immune system has room for improvement.

There are other mammals out there who can survive extreme cold. There are animals whose immune systems are much more effective than ours. There are even some animals that don’t even age. Nature has already solved many of the problems that hinder the human species today. It’s just a matter of taking those solutions and integrating them into our own biology.

If the technology in “Jurassic World: Fallen Kingdom” can create a creature as advanced as the Indoraptor, then there’s no reason why it can’t also create a human who has the muscle strength of a mountain gorilla, the immune system of an alligator, and the longevity of a tortoise. That kind of application is far more impactful than creating fancy zoo attractions.

I imagine that Dr. Malcolm might still warn about the use of this technology, but it may actually be an even greater risk to not use it. Again, it comes back to survival. Eventually, the Earth is going to die, either by the destruction of our sun or some other external force. If we’re to survive beyond that, we need to be able to survive outside one planet.

As it stands, the human species just isn’t built for that. It shows in how poorly our bodies react to space travel. It also shows in how much we struggle to survive in certain environments. To some extent, we must use the technology in “Jurassic World” to improve our survival.

Whether that involves tweaking our genetics with traits from more robust animals or creating pet raptors that help protect us, this technology has uses that are both profound and necessary. There’s still plenty of danger, although it’s doubtful any of that danger entails someone getting eaten by a T-Rex. However, it’s a danger we’ll have to confront whether the Ian Malcolms of the world like it or not.

1 Comment

Filed under futurism, gender issues, human nature, movies