It’s been a while since I’ve talked about CRISPR, biotechnology, and the prospect of ordinary people enhancing their biology in ways straight out of a comic book. In my defense, this past year has created plenty of distractions. Some have been so bad that my usual optimism of the future has been seriously damaged.
While my spirit is wounded, I still have hope that science and technology will continue to progress. If anything, it’ll progress with more urgency after this year. A great many fields are bound to get more attention and investment after the damage done by a global pandemic.
We can’t agree on much, but we can at least agree on this. Pandemics are bad for business, bad for people, bad for politics, and just objectively awful for everyone all around, no matter what their station is in life.
There’s a lot of incentive to ensure something like this never happens again is what I’m saying. While we’re still a long way from ending pandemics entirely, we already have tools that can help in that effort. One is CRISPR, a promising tool I’ve talked about in the past. While it wasn’t in a position to help us during this pandemic, research into refining it hasn’t stopped.
Despite all the awful health news of this past year, some new research has brought us some promising results on the CRISPR front. In terms of actually treading real people who have real conditions, those results are in and they give us reason to hope.
One such effort involved using CRISPR to help treat people with Sickle Cell Disease, a genetic condition that hinders the ability of red blood cells to carry oxygen. It affects over 4 million people worldwide and often leads to significant complications that can be fatal.
Since CRISPR is all about tweaking genetics, it’s a perfect mechanism with which to develop new therapies. Multiple patients have undergone experimental treatments that utilize this technology. In a report form NPR, the results are exceeding expectations for all the right reasons.
NPR: First Patients To Get CRISPR Gene-Editing Treatment Continue To Thrive
At a recent meeting of the American Society for Hematology, researchers reported the latest results from the first 10 patients treated via the technique in a research study, including Gray, two other sickle cell patients and seven patients with a related blood disorder, beta thalassemia. The patients now have been followed for between three and 18 months.
All the patients appear to have responded well. The only side effects have been from the intense chemotherapy they’ve had to undergo before getting the billions of edited cells infused into their bodies.
The New England Journal of Medicine published online this month the first peer-reviewed research paper from the study, focusing on Gray and the first beta thalassemia patient who was treated.
“I’m very excited to see these results,” says Jennifer Doudna of the University of California, Berkeley, who shared the Nobel Prize this year for her role in the development of CRISPR. “Patients appear to be cured of their disease, which is simply remarkable.”
Make no mistake. This is objectively good news and not just for people suffering from sickle cell disease.
Whenever new medical advances emerge, there’s often a wide gap between developing new treatments and actually implementing them in a way that makes them as commonplace as getting a prescription. The human body is complex. Every individual’s health is different. Taking a treatment from the lab to a patient is among the biggest challenge in medical research.
This news makes it official. CRISPR has made that leap. The possible treatments aren’t just possibilities anymore. There are real people walking this planet who have received this treatment and are benefiting because of it. Victoria Gray, as referenced in the article, is just one of them.
That’s another critical threshold in the development of new technology. When it goes beyond just managing a condition to helping people thrive, then it becomes more than just a breakthrough. It becomes an opportunity.
It sends a message to doctors, researchers, and biotech companies that this technology works. Some of those amazing possibilities that people like to envision aren’t just dreams anymore. They’re manifesting before our eyes. This is just one part of it. If it works for people with Sickle Cell Disease, what other conditions could it treat?
I doubt I’m the first to ask that question. As I write this, there are people far smarter and more qualified than me using CRISPR to develop a whole host of new treatments. After a year like 2020, everyone is more aware of their health. They’re also more aware of why science and medicine matter. It can do more than just save our lives. It can help us thrive.
We learned many hard lessons in 2020, especially when it comes to our health. Let’s not forget those lessons as we look to the future. This technology is just one of many that could help us prosper in ways not possible in previous years. We cheered those who developed the COVID-19 vaccine. Let’s start cheering those working on new treatments with CRISPR.