Tag Archives: CRISPR babies

When Sex Is Divorced From Reproduction: The Possibilities And Implications

virtual-reality-sex-110219

Relatively speaking, it wasn’t that long ago in humanity’s history when finding food was a matter of survival. It wasn’t as simple as walking into the nearest grocery store and buying whatever was on sale. Individuals, governments, and societies dedicated a good chunk of their time and energy into securing a stable food source. Those who didn’t were usually the first victims of the next famine.

These days, getting a meal is less about survival and more about logistics. Thanks to major advances in agricultural science, including those of the late Norman Borlaug, we have so much abundant food that overeating is now a bigger problem than famine. Hunger is still a major issue for certain parts of the world, but it’s more a logistical issue than a resource issue.

Once food was divorced from famine and survival, it changed the way society approached it. Most people don’t even think about where they’re going to get their next meal. Their main concern is whether it’ll be a tasty meal.

With this critical need met, we can focus more time and energy on other matters. Even before science gave us abundant food, sex and reproduction was usually our second most pressing focus. It’s the other powerful drive that unites us all as a species. As a result, it’s subject to all sorts of taboos and has been central to multiple revolutions.

There’s no question that technology has impacted sexuality every bit as much as it impacted food production. Even advances unrelated to sex, especially anti-biotics, affected various attitudes and norms. However, even with these advances, sex maintains much of its primary function in that it’s still necessary for reproduction.

With that in mind, what happens when that’s no longer the case?

What happens to sex when it’s completely divorced from reproduction?

This isn’t another speculative thought experiment. This process is already unfolding. I would argue that it started on July 25, 1978 when the first baby was born from in vitro fertilization. Since then, over 8 million babies have been born through this technology. That is not a trivial number when we’re dealing with human lives.

Just take a step back to appreciate the implications of these lives. They were all conceived and birthed without sex. In centuries past, this was grounds for a miracle that could serve as a basis for a major religion. These days, it’s so routine that it never makes the news. Most people don’t think about it. It helps that these people are just as healthy and prosperous as those who were conceived with sex.

In the near future, this could change as well. Late last year, our technology went a step further beyond conceiving babies through in vitro fertilization with the birth of the first genetically edited babies in China. Now, it’s not just normal babies being born through this technology. Thanks to tools like CRISPR, children born without sex could be healthier and stronger than those conceived through sex.

Again, that is not a trivial detail. It’s one thing for technology to simply match a natural process, especially one as critical as human reproduction. Once it starts doing it better than nature, then that’s a huge paradigm shift. It might even be a point of no return. Having babies through sex is still a thing, but it’s no longer the most effective way to have healthy, strong children.

While this has generated plenty of controversy around topics like designer babies, there hasn’t been as much discussion about what this means for sex. If sex is no longer the primary method for reproduction, or the safest for that matter, what happens to our society? What happens to centuries of taboos, attitudes, traditions, and gender roles?

It’s difficult to speculate, but some have tried. In a recent article with the BBC, author Henry T. Greely laid out a general timeline. It doesn’t rely entirely on huge leaps in reproductive technology. It simply follows the trends that began with in vitro fertilization. In the interview, these are just a few thoughts he shared.

In 20 to 40 years, most people all over the world with good health coverage will choose to conceive in a lab. Like most things, there will be a fair amount of visceral negative reaction initially, but as time goes on and kids prove not to have two heads and a tail, the public will come not only to tolerate but to prefer reproducing non-sexually.

From a logistic and public health standpoint, this makes sense. Any healthy and prosperous society would want to promote the birth of healthy children in a manner that preserves the health of the mother. With technology like in vitro and CRISPR, it might very well be preferable because it means fewer diseases, lower health care costs, and fewer burdens on parents.

That doesn’t even begin to factor in the impact of more advanced reproductive technologies. With advances like artificial wombs in development, sex wouldn’t just be divorced from reproduction. Reproduction might not require any intimate connection whatsoever. At that point, sex for reproduction is akin to drinking unpasteurized milk.

Will people still have sex at that point? I believe they will. Unless we radically change our bodies all at once, the hardware for sex will still be present. The drive to do it will still be there as well, although some might opt to turn it off if that were an option. Regardless of any lingering attitudes and taboos, there’s no getting around it. Sex still feels good. It’s still a profoundly intimate act with many health benefits.

How people go about it will likely change. A great many taboos about sex stem from its role in reproduction. Much of the stigma surrounding promiscuity and traditional gender roles have a basis in highlighting the importance of sex in the propagation of our society and species. If are reckless about it, then that can spread disease, destabilize families, and create unhealthy environments for children.

Going back to the parallels with food, the same logic was once used to discourage gluttony. For much of human history, we had to be careful with how we consumed our food. If people consumed too much and were reckless with our eating habits, then they were ill-prepared for the next famine that inevitably came.

While sex and reproduction are still very different from consuming food, the influence of technology had a major impact on collective attitudes. We don’t look at people who overeat the same way we look at people who have lots of sex. Both may still draw scorn, but few will worry for the survival of the future of their community if a handful of people overeat.

At the moment, there are very real concerns surrounding falling birth rates and people having less sex than ever before. In some countries, the low birth rates are seen as an outright crisis that has also fueled ongoing debates surrounding immigration. Crisis or not, this situation is adding more urgency to the development of reproductive technologies. That, along with the decline in sex, could hasten this pending divorce.

Once it’s finalized, what form will sex take? It could simply become an act of intimacy or recreation. Humans might ultimately treat it the same way Bonobo monkeys treat it. It’s just an intimate activity that people do. Reproduction never even enters the conversation. People save that for when they want to design their baby.

It could also gain another purpose entirely. Maybe sex becomes less an act of intimacy and more an elaborate handshake, of sorts. It could be seen as a way of establishing trust or differentiating between casual acquaintances and close friends. In that world, friends with benefits are just friends. The benefits are implied by the friendship.

There’s also the very real possibility that people will just lose interest in sex. If there’s no reason to do it and it has no bearing on the growth of a society, then it just might be an afterthought. People might still do it, but those who do would be like the people who still have their own gardens in the backyard. It’s a quaint echo of our past that most have moved past.

These are possibilities. For now, there are no inevitabilities with respect to how we’ll approach sex once it’s no longer necessary for reproduction. It’ll likely be several decades before reproductive technology gets to a point where it’s preferable to sex, both for individuals and societies at large. Until then, this lengthy divorce is already at the early stages. It’s just a matter of how messy it’ll get in the coming years.

Leave a comment

Filed under biotechnology, CRISPR, futurism, gender issues, human nature, Marriage and Relationships, Second Sexual Revolution, sex in society, sexuality, Sexy Future, technology

Why Designer Babies Are NOT The Same As Eugenics

david20catalano

As much as I celebrate advances in science and technology, I don’t deny there are instances where some advances it leads to unintended consequences. I’m sure the inventor of ski masks knows that all too well. In many cases, these missteps and mishaps are part of the ongoing challenge to use these advances responsibly. It’s akin to a maturation process that is often difficult, but still necessary.

In some cases, however, certain advances bring out some of humanity’s ugliest traits. Whether it’s a tool or an insight into the natural world, certain people who may or may not be malicious will use science to further a nefarious agenda. Of all the sciences that brought out the worst in humanity, eugenics is probably the most well-known.

The concept, itself, is not entirely abhorrent. If you look up the definition, this is what comes up.

The practice or advocacy of controlled selective breeding of human populations to improve the population’s genetic composition.

On paper, that has some objective merit. The world is a chaotic, dangerous place that’s constantly changing. In some cases, humanity is causing that change. If we’re to survive on a planet in which 99 percent of the species that have ever lived have gone extinct, it makes sense to improve our collective genetics so that we’re best equipped to survive.

Unfortunately, the details surrounding eugenics were permanently tainted when it became the preferred excuse for atrocities by the Nazis. Even before that, it was a popular talking point among racists seeking to marginalize or outright exterminate the impact of certain minorities within a society. At one point, there were organizations dedicated to promoting eugenics through forced sterilization and miscegenation laws.

The legacy of eugenics is so ugly that it’s almost synonymous with some of the worst acts of bigotry ever committed. When people think of eugenics, they don’t think of advancing human biology to make it more robust. They imagine racist tyrants forcibly sterilizing undesirable minorities in the hopes that they eventually die out in a silent genocide.

There’s no question that this form of eugenics is abhorrent. The way it was practiced throughout the 20th century was a perversion of science and technology. We would be wise to remember that as we make bigger and bolder advancements in science, especially for those related to biotechnology.

It’s here where the ugly legacy of eugenics seems destined to clash with science once more. In late 2018, news broke of a groundbreaking advance in biotechnology when a scientist named He Jiankui announced that the first genetically modified humans had been born. I went out of my way to note why this is a huge deal in the history of our species, but it’s also sparking distressing concerns related to eugenics.

Thanks to gene-editing tools like CRISPR, it’s now possible to edit the human genome with the same ease as copying and pasting text from a website. That has sparked concerns that it will be used to purge certain undesirables from the human population, just as was attempted with eugenics.

Logistically, there’s no reason why tools like CRISPR couldn’t be used to edit the genome of every child before they’re born to ensure they look a certain way. Granted, it would require some fairly invasive policies, but that has never stopped ambitious governments in the past. As these tools are refined, it’ll only get easier to pursue the kinds of racist policies that deplorable bigots in the past once favored.

However, this is not a fair association, nor is it constructive in addressing the legitimate issues surrounding the use of CRISPR and so-called designer babies. Linking this technology to eugenics is akin to blaming every nuclear physicist for the destruction of Hiroshima and Nagasaki. It’s not just because the potential of this technology is so great. The intent behind it differs considerably with that of eugenics.

That intent shows in the specifics of the first two genetically modified children. These children were not born out of a desire for racial superiority. The modifications made to their genome was intended to make them more resistant to HIV/AIDS infection. That’s an objective good. Healthier babies who are more resistant to disease is a benefit to our species, as a whole.

In addition, this feat was achieved without sterilizing someone against their will or without the consent of the parents. While there were some legitimate ethical concerns, the underlying purpose has little to do with furthering racial goals and more to do with combating disease and suffering. This is where the difference between eugenics and designer babies at its most stark.

Eugenics, historically speaking, was almost always pursued with a racial agenda. It never stopped at just treating disease. Its advocates sought more than just health. They sought superiority. That’s not how the emerging technology surrounding CRISPR is being used. It’s following a similar path to that of in-vitro fertilization, which was subject to plenty of controversy as well.

Like any technology, there are going to be legitimate concerns mixed in with the doomsayers. With CRISPR and designer babies, the concerns will be greater because the stakes will be higher. We’re not just talking about a technology that will reduce the risk of inherited diseases. This technology could fundamentally change the human race in a very literal sense.

Designer babies, much like their in vitro counterparts, will be part of that change. Regardless of how someone feels about endowing a baby with the genetics of Tom Brady and Stephen Hawking, the potential for good is just too vast. Thousands of people die every year because of diseases that are written into their genes. This technology, if properly refined, could render such suffering a distant memory.

Hesitating with this technology because of potential links to eugenics will only prolong this suffering. In the same way countless individuals wouldn’t be alive without in-vitro fertilization, there are countless people who aren’t alive now because this technology wasn’t available to help them.

Treating diseases and ensuring the health of the next generation is a common good that eugenics corrupted with racist ideology. It attempted to do that by using science and technology to more effectively oppress their chosen enemies. That is radically different than editing the genes of a child so they don’t succumb to certain diseases.

That’s not to say there aren’t risks. At some point, someone will try to abuse this technology and it’s likely that person will have unpopular views on eugenics. There will also be a point where this technology isn’t just used to treat diseases. It will also be used to implement traits and abilities within people that aren’t possible by natural means.

The look of a baby who never has to worry about genetic diseases.

The merits and ethics of such genetic tampering are definitely worth discussing, but references to eugenics will only serve to derail that discussion for all the wrong reasons. Like it or not, humans will need to keep adapting and growing in our chaotic world. If we ever hope to outlast our planet and even our sun, we can’t be bound by genetic constraints or outdated attitudes.

That makes developing genetics technology all the more vital. Eugenics was a bad ideology that hijacked a lot of good science. Whatever your opinion may be on designer babies and improving the human genome, the technology is here. Children born of this technology have arrived. The benefits are vast, provided we have the right approach.

Leave a comment

Filed under futurism, human nature, sexuality, technology

The First Genetically Modified Humans Have Been Born: Now What?

designerbabies

When the USSR launched Sputnik 1 on October 4, 1957, it didn’t just kick-start the space race. It marked a major technological paradigm shift. From that moment forward, venturing into space wasn’t just some futuristic fantasy. It was real and it had major implications for the future of our species.

On November 26, 2018, a Chinese scientist named He Jiankui announced that the first genetically modified humans had been born. Specifically, two twin girls actually had their genetic code modified at the embryonic stage to disable the CCR5 gene to make them highly resistant to HIV/AIDS. In the history of our species, this moment will likely exceed the importance of Sputnik.

This man may have just upstaged Neil Armstrong.

To appreciate why this is such a big deal, consider the full ramifications of what Mr. Jiankui achieved. The change he made to the genome of those girls was impossible for them to inherent. This particular allele is a result of a mutation within a small population of Northern Europeans and is present in no other ethnic group. It is best known for providing significant immunity to common strains of the HIV virus.

This is of significant interest to China because they’ve been dealing with a surge in HIV/AIDS rates in recent years. Even though AIDS isn’t a death sentence anymore, the medicine needed to manage it is costly and tedious. These two girls, who have not been publicly named thus far, may now have a level of resistance that they never would’ve had without genetic modification.

On paper, that’s an objective good. According to the World Health Organization, approximately 35 million people have died because of AIDS since it was first discovered and approximately 36.9 million people are living with the disease today. It’s in the best interest of society to take steps towards preventing the spread of such a terrible disease, especially in a country as large as China.

However, Mr. Jiankui has caused more consternation than celebration. Shortly after he announced the birth of the two unnamed children, China suspended his research activities. Their reasoning is he crossed ethical boundaries by subjecting humans to an untested and potentially dangerous treatment that could have unforeseen consequences down the line.

Those concerns have been echoed by many others in the scientific community. Even the co-inventor of CRISPR, the technology used to implement this treatment and one I’ve cited before as a game-changer for biotechnology, condemned Mr. Jiankui’s work. It’s one thing to treat adults with this emerging technology. Treating children in the womb carries a whole host of risks.

That’s why there are multiple laws in multiple countries regulating the use of this technology on top of a mountain of ethical concerns. This isn’t about inventing new ways to make your smartphone faster. This involves tweaking the fundamental code of life. The potential for good is immense, but so is the potential for harm.

Whether or not Mr. Jiankui violated the law depends heavily on what lawyers and politicians decide. Even as the man defends his work, though, there’s one important takeaway that closely parallels the launch of Sputnik. The genie is out of the bottle. There’s no going back. This technology doesn’t just exist on paper and in the mind of science fiction writers anymore. It’s here and it’s not going away.

Like the space race before it, the push to realize the potential of genetic modification is officially on. Even as the scientific and legal world reacts strongly to Mr. Jiankui’s work, business interests are already investing in the future of this technology. The fact this investment has produced tangible results is only going to attract more.

It’s impossible to overstate the incentives at work here. Biotechnology is already a $139 billion industry. There is definitely a market for a prenatal treatment that makes children immune to deadly diseases. Both loving parents and greedy insurance companies have many reasons to see this process refined to a point where it’s as easy as getting a flu shot.

Even politicians, who have historically had a poor understanding of science, have a great many reasons to see this technology improve. A society full of healthy, disease-free citizens is more likely to be prosperous and productive. From working class people to the richest one percent, there are just too many benefits to having a healthy genome.

The current climate of apprehension surrounding Mr. Jiankui’s work may obscure that potential, but it shouldn’t surprise anyone. During the cold war, there was a similar climate of fear, albeit for different reasons. People back then were more afraid that the space race would lead to nuclear war and, given how close we came a few times, they weren’t completely unfounded.

There are reasons to fear the dangers and misuse of this technology. For all we know, the treatment to those two girls could have serious side-effects that don’t come to light until years later. However, it’s just as easy to argue that contracting HIV and having to treat it comes with side-effect that are every bit as serious.

As for what will come after Mr. Jiankui’s research remains unclear. I imagine there will be controversy, lawsuits, and plenty of inquiries full of people eager to give their opinion. As a result, he may not have much of a career when all is said and done. He won’t go down in history as the Neil Armstong of biotechnology, but he will still have taken a small step that preceded a giant leap.

Even if Mr. Jiankui’s name fades from the headlines, the breakthrough he made will continue to have an impact. It will likely generate a new range of controversy on the future of biotechnology and how to best manage it in an ethical, beneficial manner. It may even get nasty at times with protests on par or greater than the opposition to genetically modified foods.

Regardless of how passionate those protests are, the ball is already rolling on this technology. There’s money to be made for big business. There’s power and prosperity to be gained by government. If you think other countries will be too scared to do what a science team in China did, then you don’t know much about geopolitics.

Before November 26, 2018, there were probably many other research teams like Mr. Jiankui who were ready and eager to do something similar. The only thing that stopped them was reservation about being the first to announce that they’d done something controversial with a technology that has been prone to plenty of hype.

Now, that barrier is gone. Today, we live in a world where someone actually used this powerful tool to change the genome of two living individuals. It may not seem different now, but technology tends to sneak up on people while still advancing rapidly. That huge network of satellites that now orbit our planet didn’t go up weeks after Sputnik 1, but they are up there now because someone took that first step.

There are still so many unknowns surrounding biotechnology and the future of medicine, but the possibilities just become more real. Most people alive today probably won’t appreciate just how important November 26, 2018 is in the history of humanity, but future generations probably will, including two remarkable children in China.

3 Comments

Filed under futurism, gender issues, sex in society, Sexy Future, technology